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Abstract

Two dimensional (2D) transrectal ultrasound (TRUS) guided prostate biopsy is the stan-

dard approach for definitive diagnosis of prostate cancer (PCa). However, due to the lack

of image contrast of prostate tumors needed to clearly visualize early-stage PCa, prostate

biopsy often results in false negatives, requiring repeat biopsies. Magnetic Resonance

Imaging (MRI) has been considered to be a promising imaging modality for noninva-

sive identification of PCa, since it can provide a high sensitivity and specificity for the

detection of early stage PCa. Our main objective is to develop and validate a regis-

tration method of 3D MR-TRUS images, allowing generation of volumetric 3D maps of

targets identified in 3D MR images to be biopsied using 3D TRUS images. We pro-

posed an image-based non-rigid registration approach which employs the multi-channel

modality independent neighborhood descriptor (MIND) as the local similarity feature

across the two modalities of MR and TRUS. A novel and efficient duality-based convex

optimization-based algorithmic scheme was introduced to extract the deformations and

align the two MIND descriptors. The registration accuracy was evaluated using 20 pa-

tient images by calculating the target registration error (TRE) using manually identified

corresponding intrinsic fiducials in the whole gland and peripheral zone. Additional per-

formance metrics (DSC, MAD, and MAXD) were also calculated by comparing the MR

and TRUS manually segmented prostate surfaces in the registered images. Experimental

results showed that the proposed method yielded an overall median TRE of 1.76 mm.

In addition, we proposed a surface-based registration method, which first makes use of

an initial rigid registration of 3D MR images to 3D TRUS images using 6 manually

ii
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placed approximately corresponding landmarks in each image. Following the manual

initialization, two prostate surfaces are segmented from 3D MR and TRUS images and

then non-rigidly registered using a thin-plate spline (TPS) algorithm. The registration

accuracy was evaluated using 17 patient images by measuring TRE. Experimental re-

sults show that the proposed method yielded an overall mean TRE of 2.24 mm, which is

favorably comparable to a clinical requirement for an error of less than 2.5 mm.

iii
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Chapter 1

Introduction

1.1 Motivation and Clinical Background Overview

Prostate cancer is the most common non-skin cancer in men in developed countries, with

a large and increasing incidence in most countries, and the third leading cause of death

due to cancer. It is estimated to affect 26,500 men in Canada in 2012 [1], 238,590 in

United States in 2013 [3] and is the most common cancer in men in UK (40,975 new

cases in 2010) [2]. Two dimensional (2D) transrectal ultrasound (TRUS) guided prostate

biopsy is the standard approach for definitive diagnosis and guiding biopsy needles to

suspicious regions in the prostate, due to its real-time, radiation-free, easy-to-perform

and -access imaging capability, and low cost. [6]. However, the false-negative rates for

systematic sextant biopsies range up to 30% [7] due to a lack of image contrast of prostate

tumours that is needed to clearly visualize early-stage prostate cancer. This results in

an increasing number of repeat biopsies.

Magnetic Resonance Imaging (MRI) is considered to be a promising imaging modal-

1
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ity for noninvasive identification of prostate cancers because of its high sensitivity and

specificity for detecting early stage prostate cancer [8]. Reports have shown that multi-

parametric MR imaging combined with an endorectal coil can achieve a high degree of

accuracy (between 79% - 96%) in diagnosing prostate cancer [9] [10] [11].

In terms of diagnostic accuracy and patient comfort, the endorectal coil does not sig-

nificantly improve the staging of prostate cancer and presents several complications com-

pared to using a pelvic phased-array coil alone [12]. Therefore, a phased-array coil MRI

may be a better alternative when considering patient comfort. Although MR prostate

imaging is advancing, it cannot replace TRUS guided needle biopsy at this time. This is

especially true when real-time guidance is required, and the high cost and time-consuming

procedure of performing MR imaging and targeting is taken into consideration.

Thus, the development of an MR-TRUS registration technique is motivated to direct

biopsy needles using TRUS toward regions of the prostate containing MR identified

suspicious lesions [11], which provides an effective way to perform TRUS-guided biopsy.

Accurate targeting the suspicious lesion identified in the MR image depends on ac-

curate registration of the 3D TRUS and MR images. However, the prostate of the same

patient may undergo deformations between the TRUS and MR imaging procedures. This

can be due to different patient positioning during the TRUS and MRI procedures, bladder

filling, rectal wall motion, and/or the transducer probe pressure shifting and deforming

the prostate. In order to compensate for these deformations, non-rigid registration meth-

ods are needed for prostate multimodal registration.

Efficient and accurate non-rigid 3D MR-3D TRUS registration is a challenging task

due to the totally different appearance of images acquired from these two imaging modal-
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ities.

1.2 The Prostate Gland

1.2.1 Anatomy

Figure 1.1: Anatomy of the male reproductive and urinary systems, showing the prostate,
testicles, bladder, and other organs. [1]

The prostate gland is part of a man’s reproductive and urinary systems, which is

located between the bladder and the penis, and just in front of the rectum. The actual

size of the prostate varies from man to man. It can range from the size of a walnut to a

small apple. The normal prostate size for an adult male is 15 cc to 30 cc. The urethra

runs through the center of the prostate, from the bladder to the penis.(See Figure 1.1)

The prostate is surrounded by blood and lymphatic vessels. Blood vessels are part of the



www.manaraa.com

4 Chapter 1. Introduction

circulatory system, which supply oxygen and nutrients and remove waste from the cells of

the prostate. Lymphatic vessels are part of a large network termed the lymphatic system,

which collect and carry fluid and cells from the tissues of the body. The lymphatic vessels

of the prostate carry lymphatic fluid to a mass of lymph nodes located in the pelvic region.

Figure 1.2: Zones of the prostate gland. [1]

The prostate gland is divided into three zones: peripheral zone, transition zone, and

central zone. The peripheral zone is the area of the prostate that is closest to the rectum.

It can easily be felt by the doctor during a digital rectal examination (DRE). It is the

largest zone of the prostate gland. The transition zone is the middle area of the prostate,

between the peripheral and central zones. It surrounds the urethra as it passes through

the prostate. This zone makes up about 20% of the prostate gland until the age of 40. As

men age, the transition zone begins to enlarge, until it becomes the largest region of the
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prostate. This is called benign prostatic hyperplasia (BPH). When the transition zone

enlarges, it pushes the peripheral zone of the prostate toward the rectum. The central

zone is in front of the transition zone. It is the part of the prostate that is farthest from

the rectum (See Figure 1.2). [1]

1.2.2 Prostate Cancer

Prostate cancer tends to develop in men over the age of fifty. Prostate cancer can be slow-

growing and some men who develop prostate cancer may live many years without ever

having the cancer detected. It is a disease where some prostate cells have lost normal

control of growth and division, and no longer function as normal cells. A cancerous

prostate cell might have the features of uncontrolled growth, abnormal structure and the

ability to move to other parts of the body (invasiveness). Prostate cancer is associated

with urinary dysfunction as the prostate gland surrounds the prostatic urethra (See

Figure 1.3). Changes within the gland, therefore, directly affect urinary function. [13]

1.2.3 Prostate Cancer Screening

Screening is the clinical testing leading to finding a disease (e.g. cancer) in people who do

not have symptoms of that disease. Screening for prostate cancer aims to find the cancer

at an early stage, when it is more curable, and it could be treated more effectively. For a

digital rectal exam (DRE), the doctor inserts a gloved, lubricated finger into the rectum

to feel for any bumps or hard nodules on the prostate that might be cancer. As shown in

the Figure 1.4, the prostate gland is just in front of the rectum, and most cancers begin
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Figure 1.3: Diagram showing prostate cancer pressing on the urethra. [2]

in the anterior part of the gland, which can be felt during a rectal exam. This exam can

be uncomfortable (especially in men who have hemorrhoids), but it usually is not painful

and only takes a short time. DRE is less effective than the PSA blood test in finding

prostate cancer, but it can sometimes find cancers in men with normal PSA levels. For

this reason, it may be included as a part of prostate cancer screening. However, it is

not sensitive to detecting early-stage small cancers, and is also limited by the physician’s

access to the prostate posterior. [14]

A prostate-specific antigen (PSA) test is done to measure the level of PSA in the

blood. PSA is a protein produced by prostate cells, and abnormal amounts of PSA in

the blood may indicate the presence of prostate cancer. If the level of PSA is higher

than normal (4 ng/ml), it could be due to a prostate cancer. [15] However, there are also

other causes of raised PSA, such as infection, inflammation, an enlarged prostate and
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Figure 1.4: Diagram showing the location of most prostate cancers. [2]

even exercise and sex. [14]

A DRE and PSA test can help detect prostate cancer early, but they are not 100%

accurate. They can sometimes miss prostate cancer when it is present (false negative)

or cause false alarms by suggesting that prostate cancer is present when it is not (false

positive). If the result of one of these tests is abnormal, the patient generally requires a

biopsy to confirm the diagnosis.

1.2.4 Prostate Cancer Diagnosis Using TRUS Imaging

The standard approach for definitive diagnosis makes use of 2D free-hand TRUS-guided

biopsy. Tissue samples are removed for a histological examination during a 2D TRUS-

guided biopsy. In most cases, the samples are taken from a pre-determined sextant grid

(See Figure 1.5). The number of cores obtained during the biopsy has increased from

6 to 10 or 12 to achieve a satisfactory cancer detection rate. The 12 core transperineal

prostate biopsy (See Figure 1.6) provides superior prostate cancer diagnosis to the 6 core
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biopsy [16].

The biopsy is performed by inserting an end-firing or side-firing transducer probe into

the patients rectum to acquire the ultrasound image of the prostate (See Figure 1.7).

Figure 1.5: Traditional sextant prostate biopsy where a series of six cores are removed.

However, as traditional 2D TRUS images cannot provide the precise 3D position of the

biopsy needle, the physician must mentally estimate the 3D location of the biopsy needle

based on limited 2D information, which often results in suboptimal biopsy targeting [17].

Multiple 3D TRUS systems have been developed to improve spatial information

and permit registration with 3D MR images [18] [19] [20] [21]. We have developed

a mechanically-assisted 3D TRUS system [18] that is capable of acquiring a 3D prostate

TRUS image in less than 10 s, real time 3D needle guidance and biopsy core 3D spatial

recording (See Figure 1.8). Our system allows intra-biopsy fusion of pre-biopsy MRI

for the targeted biopsy of suspicious prostate lesions using 3D TRUS needle guidance.

This was achieved through a chain of transformations from preoperative MRI to real
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Figure 1.6: Twelve core transperineal prostate biopsy.

time 2D TRUS (see Figure 1.9). The procedure begins with the acquisition of a 3D

TRUS image, and multi-parametric MR images, including T2-weighted, dynamic con-

trast enhanced (DCE) and diffusion-weighted imaging (DWI) MR (See Figure 1.10 for

3D TRUS and T2-weighted MR images). The multi-parametric MR images are used to

identify suspicious prostate lesions, and the radiologists finally outline the lesions on the

T2-weighted MR image, which is registered to the pre-biopsy 3D TRUS image a few days

before biopsy. Preoperative 3D TRUS imaging permits adequate time to ensure proper

multimodal registration without prolonging the patient’s biopsy procedure or level of dis-

comfort [22]. On the day of the biopsy, a 3D TRUS image is acquired at the start of the

biopsy procedure and then this intra-biopsy TRUS image is registered to the pre-biopsy

TRUS image to allow for target mapping on the intra-biopsy 3D TRUS [23] [24]. The

last step takes place during the biopsy when the registration guides the users to target

MR identified lesions, which have been superimposed onto the intra-biopsy image. Any
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Figure 1.7: An ultrasound probe is inserted into the rectum to acquire images of the
prostate. [3]

movement of the prostate is compensated by registering the real time 2D US images with

the 3D intra-biopsy TRUS [25].

1.2.5 Prostate Cancer Diagnosis Using MR Imaging

Magnetic resonance imaging (MRI) is accepted as one of the best imaging modalities for

detecting and staging prostate cancer due to the excellent anatomical images of the gland

that it yields. Reports have shown that multi-parametric MR imaging combined with

an endorectal coil can achieve a high degree of accuracy in diagnosing prostate cancer

of between 79% - 96% [9] [10] [11]. Generally, T2-weighted imaging has been used for

detecting prostate cancer. However, sometimes the diagnostic accuracy of conventional

T2-weighted MR is not satisfactory, and recently the use of functional methods, such

as DCE, DWI, and spectroscopic imaging, have been recommended as an adjunct to
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Figure 1.8: A photograph of the mechanically-assisted 3D TRUS biopsy system with
real-time tracking and recording of the 3D position of biopsy needle.

conventional imaging [10]. DCE-MRI can identify early stage prostate cancer with high

sensitivity and specificity, and can predict the histological grade to some extent. [26] [27]

Combined T2 and DWI MRI is better than T2 imaging alone in the detection of significant

cancer within the peripheral zone of the prostate. [28] Studies have also shown that the

addition of 3D MR spectroscopic imaging to MR imaging provides better detection and

localization of prostate cancer in a sextant biopsy of the prostate than does use of MR

imaging alone. [29] [30]
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Figure 1.9: Prostate biopsy workflow using our mechanically-assisted 3D TRUS sys-
tem. [4]

1.3 Registration

1.3.1 3D MR-TRUS Registration for Image-Guided Prostate

Biopsy

As our proposed workflow stated in section 1.2.4, with the acquisition of a pre-biopsy 3D

TRUS image and multi-parametric MR images, including T2-weighted, DCE and DWI

MR. The radiologists identify the suspicious prostate lesions using the multi-parametric

MR images, and finally outline the lesions on the T2-weighted MR image. T2-weighted
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Figure 1.10: 3D TRUS and T2-weighted MR images were required for an MR/3D TRUS-
guided biopsy procedure.

MR image is then registered to the pre-biopsy 3D TRUS image, allowing mapping of the

identified and outlined suspicious lesions onto the TRUS image.

There is also another clinical workflow, which uses pre-biopsy MR images registerd

with the intra-biopsy TRUS directly on the day of the biopsy. [31] The MR images are

obtained days, weeks, or even months before the biopsy. On the biopsy day, the operator

first collects a series of 2D TRUS images from the prostate base to its apex. After a

3D TRUS prostate volume is reconstructed from the 2D images, the MR and the TRUS

images are then spatially aligned with each other.

1.3.2 The Theory of Image Registration

Image registration is the determination of a geometrical transformation that aligns points

in one view of an object with corresponding points in another view of that object or

another object. [32] The images might be taken at different times and from different
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Figure 1.11: A typical image registration schema. This figure is adapted from refer-
ence [5].

viewpoints using different imaging modalities. The procedure involves a geometric trans-

formation that includes matching of corresponding points or image features on the images

by trying to maximize the similarity between such points or the images while estimating

the transformation parameters. A typical image registration algorithm consists of four

components: (1) a similarity measure that penalizes the dissimilarity between 2 images;

(2) a series of geometric transformations that can be applied to the moving image for the

spatially warping step; (3) an optimizer that searches for the optimized transformation

that maximizes the similarity; and (4) an interpolator that interpolates image intensities

at non-grid locations of the transformed moving image. Figure 1.11 shows a typical im-

age registration framework, where the parameters α and λ represent the matching degree

between two temporal images and the preselected threshold, respectively [5].
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1.3.3 Image Registration Methods

Geometrical Transformations

(1) Rigid tranformations:

Rigid transformation is defined as a vector space that preserves distances between every

pair of corresponding points in the two images to be registered. Two components are used

to specify a rigid transformation, a translation and a rotation, which can be formulated as

p
′
= Rp+ T , (1.1)

where, p and p
′

are the original and transformed images, respectively. R is a 3 × 3

orthogonal matric defining the rotation portion of the transformation, and T is a 3D

vector that may be specified by giving its three coordinates tx, ty, tz relative to a set of

x, y, z Cartesian axes.

(2) Non-rigid transformations:

Non-rigid transformations are used not only for non-rigid anatomy, but also inter-patient

registration of rigid anatomy or rigid anatomy’s intra-patient registration when there are

non-rigid deformation during the image acquisition procedure.

Point-Based Methods

A set of corresponding fiducial pairs are selected to specify a transformation that aligns

the points. The fiducials are localized by interactive visual identification of anatomical

landmarks. Commonly used methods for aligning two sets of corresponding fiducial

points involve iterative closest point (ICP) [33] and thin plate spline (TPS) [34]. ICP was
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proposed to represent a key approach for registering 3D shapes (including free-form curves

and surfaces), which minimizes the distance from the source to the reference point cloud.

TPS defines a unique smooth registration from a template image to a target image based

on registering corresponding landmarks. It interpolates specified points while minimizing

an approximate curvature (integrated squared spatial second derivative).

Surface-Based Method

Surface-based image registration methods involve determining corresponding surfaces

in different images (and/or physical space)and computing the tranformation that best

aligns these surfaces. [32] The surface representation can be simply a point set (i.e. a

collection of points on the surfaces), a faceted surface (e.g. triangle set), an implicit

surface, or a parametric surface (e.g. B-spline surface). The methods of aligning two

sets of corresponding points on the surfaces are as same as the point-based registration

methods mentioned in section 1.3.3.

Intensity-Based Method

The transformation of intensity-based registration is determined by iteratively optimiz-

ing the similarity measure, which is calculated from all pixel or voxel values. [32] The

optimization part of the registration aims to find the optimal value of the similarity

measure.

Intensity-based registration methods can be divided into three classes:

(1) calculating the correlation or sum of differences between two images using the pixel

or voxel values alone;
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(2) calculating spatial information using pattern intensity, local normalized cross corre-

lation, gradient difference or gradient correlation;

(3) histogram based calculation based on joint entropy or mutual information [35].

1.3.4 Evaluation of Image Registration of the Prostate

As previously stated, accurate 3D MR-TRUS registration is critical for accurate biopsy

planning and needle guiding. Target registration error (TRE) [36] [37] indicates the over-

all misalignment of manually identified corresponding intrinsic fiducials in MR and 3D

TRUS prostate images. A target is an anatomical landmark in the patient’s prostate that

is not used to compute the transformation of the moving image to the fixed image. The

set of target points in MR images are denoted as tpi, and in the TRUS, the corresponding

points are tqi, where i = 1, ...N . TRE is defined as the Euclidean distance between a

transformed fiducial on the moving and the corresponding fiducial on the fixed images,

and the root mean square TRE of all fiducials is given by:

TRE =

√√√√ 1

N

N∑
i=1

(T (tpi)− tqi)2 , (1.2)

where T (.) is the transformation of the moving image. The fiducials we use for prostate

registration are calcifications and cysts, which are manually identified in the MR-TRUS

image pairs. Since the TRE is a root mean square error, it gives an estimate of the

standard deviation of the normal distribution of biopsy targets given by a registration

algorithm, centered on a true target. Such a distribution given by a TRE of 2.5 mm gives

a confidence interval corresponding to two standard deviations from the mean in which
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95.4% of registered targets are within the 5 mm radius of a clinically significant prostate

tumour [23] [38].

The fiducial localization error (FLE) [37] is a statistical measure of the error generated

by the variability in locating a fiducial, which allows determination whether fiducial

identification dominates the TRE. For FLE determination, the trained operator identifies

multiple fiducials (e.g. at least 20 fiducials) in multiple prostate image pairs (e.g. 10

image pairs) multiple times (e.g. 5 times) over several days (e.g. 5 days) and records

their coordinates once per day. The variances of the x, y and z coordinates over the five

days are then calculated. The FLE for fiducial i is:

FLEi =
√
σ2(X i) + σ2(Y i) + σ2(Zi) , (1.3)

where, X i, Y i and Zi are the sets of x, y and z coordinates of fiducial i selected at

different time points. The mean FLE is calculated as:

FLE =

√√√√ 1

N

N∑
i=1

(FLEi)2 , (1.4)

where N =total number of fiducials.

The Dice Similarity Coefficient (DSC) is a measure of overlap between the segmented

prostate in transformed moving image (M) and the corresponding segmented prostate in

fixed image (F) and is given by:

DSC =
2(M ∩ F )

M + F
(1.5)
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1.4 Thesis Hypothesis

The central hypothesis of this work is that non-rigid image-based and surface-based

MR-TRUS registration methods perform with sufficient accuracy for clinical use in 3D

TRUS-guided prostate biopsy. A TRE of less than 2.5 mm indicates clinically acceptble

performance. (See section 1.3.4) The specific registration algorithms proposed are:

(1) non-rigid image-based 3D MR-TRUS registration using efficient convex optimization,

and (2) non-rigid surface-based MR-TRUS registration.

1.5 Thesis Objective

This thesis follows two related objectives, which test the hypothesis stated above. The

objective of this work is to develop and evaluate non-rigid image-based and surface-based

registration methods for 3D MR-TRUS registraion, allowing identifying and outlining

suspicious lesions on MR images, and then mapping onto the TRUS image.

1.6 Thesis Outline

1.6.1 Chapter 2: Non-Rigid Image-Based MR-TRUS Registra-

tion

We proposed an image-based 3D MR-TRUS registration method based on a novel duality-

based approach for computing the challenging 3D MR-TRUS non-rigid deformable regis-

tration fields. A modality independent neighbourhood descriptor (MIND) [39] was used
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for similarity metric calculation. A coarse-to-fine scheme was applied to capture large

deformations, and at each resolution level, an efficient multiplier-based algorithm was em-

ployed to compute an updated incremental deformation field. We validated the proposed

registration method on 20 patient 3D MR-TRUS image pairs using TRE, DSC, mean

absolute surface distance (MAD) and maximum absolute surface distance (MAXD).

A preliminary work of this chapter has been previously published as a conference

paper [40]. A journal version of this chapter with a comprehensive study of the pro-

posed approach, and more experimental validation results has been submitted as, “Three-

Dimensional Non-Rigid MR-TRUS Registration Using Dual Optimization,” by Y. Sun,

J. Yuan, W. Qiu, M. Rajchl, C. Romagnoli, and A. Fenster, to the IEEE Transactions

on Medical Imaging, Nov 2013. Manuscript#2013-0816.

1.6.2 Chapter 3: Non-Rigid Surface-Based MR-TRUS Regis-

tration

We developed a surface-based non-rigid prostate registration of 3D TRUS to T2-wieghted

MR images based on specific prostate boundary point correspondences followed by a 3D

TPS deformation. The primary contributions of this paper are: 1) 2D slice correspon-

dences are determined by rotationally re-slicing two segmented prostate surfaces from

both 3D MR and TRUS images around a specified rotational axis, which is started by

initializing 3 pairs of corresponding anatomical landmarks, and 2) a method for finding

the point correspondences based on the resliced 2D corresponding slices. This approach

takes into account the correspondences on the prostate surface, inside the prostate, as
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well as the centroid of the prostate.

We measured TRE as an indication of the overall misalignment of manually identified

corresponding intrinsic fiducials in the MR and 3D TRUS images for 17 image pairs. We

also measured the TRE of fiducials within the peripheral zone (PZ) separately, known

to be the most common site harboring cancer and subject to deformation caused by the

US transducer during biopsy. We measured the FLE to allow determination whether

fiducial identification dominated the TRE. For FLE determination, the trained operator

identified 30 fiducials in 10 prostate image pairs (three fiducials/prostate) five times over

five days and recorded their coordinates once per day.

A preliminary work of this study has been published as a conference paper, [41] and

an extended journal version with the registration approach altered and improved is about

to be submitted to Medical Physics.
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Non-Rigid Image-Based MR-TRUS

Registration

2.1 Introduction

Few image-based registration methods to date have contributed to image-based 3D MR-

TRUS prostate registration. Mutual information (MI) for image-based multi-modal reg-

istration methods was first introduced by Maes et al. [42]. They aimed to find a sta-

tistical intensity relationship across images, thereby maximizing the amount of shared

information between two images. Heinrich et al. [39] proposed a modality independent

neighborhood descriptor (MIND) for multi-modal deformable registration. They made

use of the concept of local self-similarity within small image patches of one image and

aimed to extract the distinctive structure in a local neighborhood that is preserved across

modalities.

Strong clinical interests motivate the development of efficient 3D MR-TRUS registra-

22
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tion methods that dictate fewer interactions to decrease operator variability, especially

the variational optical-flow based optimization approaches [43], which rely on a fast

numerical solver to the defined nonlinear optimization problem. For the studied image-

based non-rigid medical image registration problems, much attention has been given to

the Horn & Schunck scheme [44] [45] combined with an incremental coarse-to-fine strat-

egy. It can properly compute a non-rigid deformation field with sufficient smoothness

and capture substantial deformations. In particular, a partial differential equation (PDE)

diffusion-based algorithm is often derived as the first-order solver due to its simplicity

in implementation. However, only a local optimum can be obtained, and the numerical

scheme also requires the diffusion step-size to be small enough to achieve convergence, for

which more diffusion iterations are needed. A convex optimization method was recently

successfully developed to solve a wide spectrum of problems in image processing [46] [47].

It provides both a sound analysis in mathematics and efficient algorithm in computation,

with the capability of tackling the non-smooth image matching terms and deformation

regularization functions.

This chapter describes an image-based 3D MR-TRUS registration method based on

a novel duality-based approach for computing the challenging 3D MIND-based non-rigid

deformable registration fields. A coarse-to-fine scheme was applied to capture large de-

formations, and at each resolution level, an efficient multiplier-based algorithm was em-

ployed to compute an updated incremental deformation field. We validated the proposed

registration method on 20 patient 3D MR-TRUS image pairs using target registration

error (TRE), Dice similarity coefficient (DSC), mean absolute prostate surface distance

(MAD) and maximum absolute surface distance (MAXD).
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2.2 Methods and Experiments

The MIND method introduced by Heinrich et al. [39] presented an image descriptor

independent of the modality, contrast and noise that remained sensitive to inherent im-

age features such as image corners or edges, etc. The method is based on the local

image self-similarity feature, which was originally introduced by Buades et al. [48] for

image denoising. Heinrich et al. [39] demonstrated that in terms of image registration,

especially when dealing with different image modalities, a point-wise MIND descriptor

performs better than other proposed image information descriptors, such as normal-

ized mutual information (NMI) [49] or patch-based entropy descriptor [50]. We utilized

MIND as the cross-modality measure to the 3D non-rigid MR-TRUS deformable regis-

tration (See Figure 2.1). Let IM(x) and IR(x) be the input 3D MR and TRUS images

Figure 2.1: Proposed concept for the use of MIND for multi-modal registration. MIND
is calculated for each voxel in the MR and 3D TRUS images.
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respectively. M(x) := (m1(x), . . . ,mk(x))T and R(x) := (r1(x), . . . , rk(x))T be the com-

puted k-channel MIND descriptor at x associated with the MR image IM(x) and the

TRUS image IR(x), where k is the dimension of the applied MIND descriptor. We aim

to minimize a difference measure between M(x) and the deformed R(x + u) over the

deformation field u(x) = (u1(x), u2(x), u3(x))T, which can be essentially formulated as

min
u

P (u) :=
k∑
i=1

∫
pi(mi(x)− ri(x+ u)) dx , (2.1)

where the penalty function pi(v), i = 1 . . . k, is often positive and convex. For example,

when pi(v) = |v|2 /2, i = 1 . . . k, the above formulation defines the sum of squared

difference measure (SSD). Clearly, the minimization of (2.1) is ill-posed, for which a

smoothness regularization of the deformation field u(x) is often added to (2.1) to restrict

the solution space of u(x).

In this method, the convex regularization term is considered asG(u) :=
∑3

i=1

∫
|∇ui|2 dx,

which results in the following minimization problem

min
u

P (u) +
α

2

3∑
i=1

∫
|∇ui|2 dx , (2.2)

where α > 0 is a constant.
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2.2.1 Incremental Gauss-Newton and Primal-Dual Optimiza-

tion

Note the MIND-difference term P (u) in (2.2) is often highly non-linear, hence the energy

function of (2.2). To efficiently address the challenging minimization problem of (2.2),

a nonlinear Gauss-Newton optimization scheme is applied [51]. It results in a series of

incremental Horn-Schunck warping steps [51], where each step properly approximates an

update h(x) = (h1(x), h2(x), h3(x))T to the current deformation estimation u(x), till the

updated deformation h(x) is sufficiently small.

In particular, the incremental deformation h(x) at each updating step is estimated

by solving the following optimization problem:

min
h

1

2

∫
(P0 +∇P · h)2dx +

α

2

3∑
i=1

∫
|∇(ui + hi)|2 dx , (2.3)

where the highly nonlinear function P (u) of (2.2) is linearized and penalized by its convex

quadratic function.

Clearly, (2.3) amounts to a convex optimization problem. In this work, we study such

convex minimization problem (2.3) based upon a novel primal-dual framework, which

not only provides a mathematical dual analysis on (2.3) but also derives a new dual

optimization algorithm.

In fact, with help of the equivalent conjugate representations of convex functions, we

can derive its mathematically equivalent formulation, i.e. the dual model, to the convex

minimization problem (2.3) by the modern convex optimization theories, such that
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Proposition 2.2.1 The convex minimization problem (2.3) can be equally represented

by its dual model:

max
w,q

E(w, q) :=

∫
(wP0 +

3∑
i=1

ui div qi)dx−
1

2

∫
w2dx (2.4)

− 1

2α

3∑
i=1

∫
q2
i (x)dx

subject to

Fi(x) := (w · ∂iP + div qi)(x) = 0 ; (2.5)

for ∀x ∈ Ω, where i = 1, 2, 3.

Its proof is given in APPENDIX A.1.

2.2.2 Dual Optimization Algorithm

As in Sec. A.1, each component of the incremental deformation field (h1(x), h2(x), h3(x))T

just works as the multiplier function to the respective linear equalities (2.5) under the

perspective of primal and dual. To this end, the energy function of the primal-dual model

(A.5) (See APPENDIX A.1) just gives the Lagrangian function to the dual formulation

(2.4), i.e.

L(h,w, q) =

∫
(wP0 +

3∑
i=1

ui div qi)dx−
1

2

∫
w2dx

− 1

2α

3∑
i=1

∫
q2
i dx+

3∑
i=1

〈hi, Fi〉 , (2.6)
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where the linear functions Fi(x), i = 1, 2, 3, are given in (2.5). Then, we define its

augmented Lagrangian function

Lc(h,w, q) = L(h,w, q)− c

2

3∑
i=1

‖Fi‖2 , (2.7)

where c is a positive constant and the additional quadratic penalty function is applied

to force the linear equalities (2.5).

Therefore, we can derive an efficient duality-based Lagrangian augmented algorithm,

see [52, 53, 46] for details:

• Set the staring values of w0, q0 and h0, and let k = 0;

• Fix qk and hk, optimize wk+1 by

wk+1 := arg max
w

Lc(h
k, w, qk) . (2.8)

It generates the following convex minimization problem:

min
w

1

2

∫
(w − P0)2dx+

c

2

3∑
i=1

∫
(w∂iP − T ki )2dx ; (2.9)

where T ki (x), i = 1 . . . 3, are fixed. Therefore, wk+1 can be simply computed by

wk+1 =
P0 + c

∑3
i=1(∂iP · T ki )

1 + c
∑3

i=1(∂iP )2
. (2.10)
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• Fix wk+1 and hk, optimize qk+1 by

qk+1 := arg min
q

Lc(h
k, wk+1, q) ; (2.11)

which gives the following three convex minimization problems:

min
qi

1

2α

∫
(qi + α∇ui)2dx+

c

2

∫
(div qi − Uk

i )2dx , (2.12)

i = 1 . . . 3; where Uk
i , i = 1 . . . 3, are fixed. Hence, qk+1

i , i = 1 . . . 3, can be simply

computed by gradient descent.

• Update hk+1 by

hk+1
i = hk − c

(
wk+1 · ∂iP + div qk+1

i

)
; i = 1, 2, 3 ; (2.13)

• Set k = k + 1 and iterate the above three steps till convergence, i.e.

c
∥∥wk+1 · ∂iP + div qk+1

i

∥∥ ≤ δ , (2.14)

where δ is a chosen small positive parameter (5× 10−4) to determine convergence

and ‖·‖ is the L1-norm defined as below:

‖g(x)‖ =

∫
|g(x)| dx . (2.15)
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2.2.3 Coarse-to-Fine Incremental Scheme

A coarse-to-fine scheme is applied to capture large deformations. First, we construct a

coarse-to-fine pyramid of each MIND descriptor function: letM1(x) . . .ML(x) be the L-

level coarse-to-fine pyramid representation of M(x) from the coarsest resolution M1(x)

to the finest resolution ML(x) = M(x); and R1(x) . . .RL(x) the L-level coarse-to-fine

pyramid representation of R(x).

At each ` level, ` = 1 . . . L, we compute the deformation field u`(x) based on the two

MIND functionsM`(x) and R`(x+u`−1) at the same resolution level, where R`(x+u`−1)

is warped by the deformation field u`−1(x) computed at the previous level `− 1. For the

coarsest level, i.e. ` = 1, the so-called previous-level deformation is set to be 0. In our

implementation L = 4.

2.2.4 Experiments

This study was conducted with images acquired with the approval of the institutions

Human Subjects Research Ethics Board and with the informed consent of all subjects.

The proposed convex optimization approach to non-rigid MR-3D TRUS registration was

implemented using parallel computing architecture (CUDA, NVIDIA Corp., Santa Clara,

CA), and the user interface was developed in Matlab (Natick, MA, USA). The experi-

ments were conducted on a Windows desktop with an Intel i7-3770 CPU (3.4 GHz) and

a GPU of NVIDIA Geforce 680GTX. The mean computation time was calculated by

running the program for 10 patients.
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Materials

T2-weighted MR images were acquired using a body coil and corresponding 3D TRUS

images from 20 patients scheduled prostate biopsy. The MR images were obtained using

a whole-body 3.0-T Excite 12.0 MRI system (GEHC, Milwaukee, WI, USA) at an image

size of 512× 512× 36 voxels with a voxel size of 0.27× 0.27× 2.2 mm3. The 3D TRUS

images were acquired using a 3D TRUS mechanical scanning system developed in our

laboratory [18], using a Philips HDI-5000 US machine with a Philips end-firing C9-5

transducer (Philips, Bothell, WA, USA). The 3D TRUS image size was 448× 448× 350

voxels with a voxel size of 0.19× 0.19× 0.19 mm3.

Manual Initialization

We initialized the registration to generate a rigid transform as an initial approximate

alignment using six manually placed approximately corresponding landmarks: leftmost,

rightmost, topmost, bottommost points on the largest view of the prostate axial slices [54];

the urethra at its entrance into the prostate; and the end point of the peripheral zone

at the apex on the 3D TRUS and MR images. These approximately selected landmarks,

such as on the prostate boundary and bladder, are geometric features that can be identi-

fied on both modalities. The MR image was then resampled to have the same dimensions

and voxel size as the TRUS image. Figure 3.1 shows an example of six operator selected

landmarks on the prostate boundary. Figure 3.1(b) shows the selection on the axial MR

and 3D TRUS slices, corresponding to the 2D image with the largest view of the prostate,

Figure 3.1(c) at the urethra’s entrance point into the prostate, and Figure 3.1(a) at the
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(a)

(b)

(c)

Figure 2.2: Red dots indicate approximate corresponding anatomical landmarks on 3D
TRUS images (left column) and MR (right column), (a) shows the corresponding left-
most, rightmost, topmost, bottommost points on the largest view of the axial slices, (b)
shows the corresponding entrance points of urethra into the prostate, and (c) shows the
corresponding end points of peripheral zone at the apex.
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end of the peripheral zone of the apex.

2.2.5 Evaluation

Accuracy

We measured the target registration error (TRE) [36] [37] as the overall misalignment

of manually identified corresponding intrinsic fiducials in MR and 3D TRUS images.

The approximate corresponding landmarks used for initialization were not used in the

evaluation. Seventy-nine fiducials (calcifications / cysts) were manually identified in the

twenty image pairs by a trained operator (Y.S.) under the supervision of an experienced

radiologist (C.R.). Of the 79 fiducials selected, 27 were within the peripheral zone (PZ),

known to be the most common site harboring cancer [55] and subject to deformation

caused by the US transducer during biopsy. Accurate biopsy targeting relies on correc-

tions being made for this deformation. We also measured the fiducial localization error

(FLE) [37] to allow determination whether fiducial identification dominated the TRE.

For FLE determination, the trained operator identified 30 fiducials in 10 prostate image

pairs (three fiducials/prostate) five times over five days and recorded their coordinates

once per day. In addition, we measured the TRE dependence on fiducial distance from

the probe tip to determine our ability to correct the deformation induced by the TRUS

transducer.

The trained operator manually segmented prostate surfaces from both MR and 3D

TRUS images under the supervision of an experienced radiologist (C.R.). Using the

segmented prostate boundaries, we compared the registered MR and corresponding 3D
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TRUS images by calculating the DSC [56], MAD, and MAXD [57]. All validation metrics

were separately calculated for three prostate sub-regions: the apex, mid-gland and base,

selected along the apex-base axis of the manual segmented TRUS prostates (0.3, 0.4, 0.3

of the length of the apex-base axis respectively) [54]. A slice-by-slice DSC calculation

was also performed, which aims to investigate the overlap between 2D slices of MR and

TRUS images from apex to base. We first found the two end points of the apex and base

from an axial view of a prostate, and then equidistantly extracted 10 slices between the

two points along the apex-base axis. Thus we were able to calculate the DSC for the 10

slices. Figure 2.3 shows an example of the extracted slices (slice number 2, 4, 6 and 8,

labeled from the apex) of a prostate.

Statistical analyses were performed in SPSS Version 15.0 (SPSS, Chicago, IL) to

determine if there was a significant difference in the TREs between the manual rigid

initialization and deformable registration.

Reproducibility

The variability of our registration method was determined by calculating the dependence

of the non-rigid registration on the manual rigid initialization. To study the effects of

variability of selecting approximate fiducials during initialization on TRE, 10 patients’

3D prostate MR-TRUS image pairs were selected. These 3D MR-TRUS images were ini-

tialized using manually identified fiducials selected by three trained operators, five times

each. Each initialization procedure was performed at least one day after the previous

session in order to minimize learning effects. The initialized MR-TRUS images were then

used for non-rigid registration. TRE values for each trial and the overall TRE for all
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Figure 2.3: Columns 1 and 2 show fixed TRUS and registered MR images respectively.
Column 3 shows the checkerboard of our proposed registration method. The rows show
the apex to base registration results slice-by-slice from top to bottom. The slices from
one prostate are slice 2, 4, 6 and 8 labeled from the apex.
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Figure 2.4: Examples of axial (left column), coronal (middle column) and sagittal (right
column) views through registered MR (top row) and 3D TRUS (bottom row) images.

patients were then calculated.

2.3 Results

2.3.1 Accuracy

Figure 2.4 shows examples of registered MR and 3D TRUS images from axial, coronal

and sagittal views. The median and mean TRE results for the initial rigid alignment

and the non-rigid registration are summarized in Table 2.1, which shows an overall mean

TRE of 3.37± 1.23 mm for the rigid initialization and 1.93± 0.73 mm for the non-rigid

registration.

We performed a Shapiro-Wilk test on the TREs calculated for the initial rigid trans-
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Table 2.1: TREs for 20 patient image pairs.

Patient# Rigid RMS TRE (mm) Non-rigid RMS TRE (mm)

Median Mean ± std Median Mean ± std

1 2.76 2.76 ± 0.25 2.49 2.41 ± 0.58

2 2.47 2.25 ± 0.61 1.32 1.31 ± 0.22

3 2.06 2.17 ± 0.58 1.61 1.83 ± 0.54

4 1.96 2.19 ± 0.47 1.15 1.65 ± 1.06

5 2.29 2.30 ± 0.33 1.26 1.31 ± 0.69

6 2.30 2.25 ± 0.32 1.47 1.47 ± 0.03

7 1.70 1.69 ± 0.27 1.11 1.13 ± 0.27

8 1.54 1.74 ± 0.44 0.81 1.01 ± 0.35

9 3.30 3.74 ± 0.67 2.97 2.89 ± 0.12

10 3.15 2.92 ± 0.56 2.17 1.96 ± 0.40

11 5.44 5.49 ± 0.72 1.87 1.96 ± 0.79

12 3.22 3.28 ± 0.27 2.25 2.32 ± 0.18

13 2.88 3.11 ± 0.69 1.14 1.66 ± 0.77

14 3.32 3.32 ± 0.30 1.56 1.90 ± 0.86

15 4.29 4.24 ± 0.27 2.05 2.22 ± 0.54

16 3.68 4.17 ± 1.10 2.12 2.27 ± 0.26

17 5.70 5.76 ± 0.11 1.96 1.88 ± 0.28

18 3.13 3.16 ± 0.77 1.79 1.90 ± 0.79

19 4.35 4.21 ± 0.63 2.31 2.40 ± 0.39

20 4.83 4.88 ± 0.09 1.05 1.60 ± 0.75

All 2.95 3.37 ± 1.23 1.76 1.93 ± 0.73

Table 2.2: TREs for peripheral zone (PZ), central gland (CG) and whole gland (WG).

PZ CG WG

# of fiducials 27 52 79

Mean (mm) 1.97 ± 0.67 1.90 ± 0.76 1.93 ± 0.73

Median (mm) 1.80 1.75 1.76

form and deformable registration data sets (see Table 2.1). This test revealed the TRE

distributions of manual rigid initialization and deformable registration were both non-

normal (p < 0.05). Thus, we performed a Wilcoxon Sign Rank test for non-normal



www.manaraa.com

38 Chapter 2. Non-Rigid Image-Based MR-TRUS Registration

Table 2.3: Results of DSC for the prostate apex, mid-gland and base, and MR-TRUS
surface distance metrics.

Patient# DSC (%) Surface distance (mm)

Apex Mid Base WG MAD MAXD

1 83.7 94.9 85.5 91.2 1.38 5.95

2 78.0 92.7 81.5 90.7 1.30 3.78

3 82.1 88.2 78.7 87.3 1.63 6.91

4 87.7 92.1 76.0 90.9 1.08 4.85

5 85.2 92.3 70.7 85.2 1.64 6.83

6 83.1 95.6 84.8 87.7 1.59 7.14

7 82.3 90.6 78.7 90.2 1.04 4.85

8 84.5 89.4 76.6 85.4 1.73 8.26

9 89.8 95.0 79.0 83.9 2.25 12.84

10 72.6 89.7 80.5 79.2 2.43 7.63

11 61.2 83.0 70.0 77.6 2.75 8.76

12 84.6 93.5 91.7 82.9 2.13 7.92

13 90.2 94.4 84.7 91.8 1.45 4.60

14 86.0 95.4 92.4 85.9 1.83 5.91

15 77.1 87.6 73.6 85.6 1.58 8.95

16 88.1 93.8 82.4 86.0 2.04 5.57

17 80.8 95.4 88.7 85.4 2.24 6.27

18 83.1 94.8 88.3 89.5 1.49 5.38

19 67.2 92.8 85.9 84.1 2.29 6.49

20 69.0 88.4 84.1 74.2 2.91 9.07

All 80.8 ± 7.8 92.0 ± 3.4 81.7 ± 6.4 85.7 ± 4.7 1.84 ± 0.52 6.90 ± 2.07

distributions, which indicated a significant difference between the TRE values of the two

study groups, (p < 0.01).

The FLE was 0.21 mm for 3D TRUS images, and 0.18 mm for MR. Thus, the FLEs

did not dominate the overall TRE. The mean and median TRE values for PZ, central

gland (CG) and whole gland (WG) are summarized in Table 2.2, which shows that the

mean TRE for PZ is about 0.1 mm higher than the value for CG.

Figure 3.5(a) shows the frequency distribution of all measured TREs of the initial rigid
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(a)

(b)

Figure 2.5: Whole gland (WG) (black) and peripheral zone (PZ) (white) frequency dis-
tributions of: (a) initial alignment TRE between all 79 fiducial pairs, and (b) non-rigid
registration TRE.
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Figure 2.6: Plots of the spatial distribution of TREs: The TREs are plotted against the
Euclidean distance (mm) from the TRUS probe tip with distance bin range of 1 mm.
(The central red marks are the medians; the edges of the boxes show the 25th and 75th
percentiles; the whiskers extend to the most extreme data points not considered outliers;
the one outlier is plotted as a plus sign individually, and the distance bin with only one
fiducial is plotted as a red dash with a red dot. The range of the distances are based on
the ability to find fiducials and size of prostate.)

alignment and Figure 3.5(b) the non-rigid registration for the WG and PZ. Figure 3.5(b)

shows that 78% of the TRE values for WG and 63% for PZ are below a value of 2.5

mm. The TREs as a function of fiducial distance from the transducer tip are plotted

in Figure 2.6, which indicates that there is little dependence of the TRE values on the

fiducial distance from the transducer probe tip.

Table 2.3 shows the mean DSC, MAD and MAXD for WG, apex, mid-gland, and

base, respectively. It shows an average DSC of 80.8± 7.8% for the apex of the prostate,

92.0 ± 3.4% for the mid-gland, 81.7 ± 6.4% for the base and 85.7 ± 4.7% for the whole

gland. The results of surface distance calculation show an overall average of 1.84± 0.52
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Table 2.4: Results of slice-by-slice DSC (%) per slice for 10 slices of each prostate.

Patient# Apex Mid Base

Slice 1 Slice 2 Slice 3 Slice 4 Slice 5 Slice 6 Slice 7 Slice 8 Slice 9 Slice 10

1 35.4 84.0 91.9 93.5 94.8 95.8 95.1 92.6 86.7 67.5

2 0 72.5 85.3 89.7 92.8 94.3 93.5 90.7 84.3 54.0

3 45.5 86.2 88.5 89.4 88.8 87.2 87.5 85.6 79.9 58.9

4 76.5 88.7 89.9 90.7 91.7 93.1 92.6 88.7 77.0 50.9

5 31.6 90.1 93.6 94.3 93.9 92.5 87.6 79.3 68.5 45.3

6 20.6 84.5 92.3 96.0 96.3 96.3 94.1 89.5 83.2 69.3

7 72.4 90.9 86.6 89.1 90.7 91.3 91.1 88.1 82.3 55.6

8 60.3 86.5 92.4 93.9 92.0 87.7 84.0 81.5 77.4 67.3

9 51.8 93.4 96.1 96.0 95.2 94.4 94.3 87.8 81.2 62.8

10 25.9 67.6 84.9 87.9 89.7 91.7 89.8 87.8 81.2 62.8

11 0 54.0 68.5 79.8 88.0 84.2 79.7 76.4 70.4 50.5

12 56.0 86.5 90.7 92.8 92.7 93.3 95.3 94.8 90.9 74.6

13 84.0 90.2 91.1 94.2 95.6 95.2 92.5 91.2 90.5 61.0

14 73.1 83.9 88.9 93.5 95.6 96.4 96.0 95.4 93.0 80.0

15 52.6 75.2 85.1 87.6 88.1 87.6 87.2 84.7 75.2 53.6

16 1.5 83.6 92.2 92.0 93.3 95.6 93.4 92.0 84.7 57.5

17 0 74.0 83.4 93.4 96.3 96.0 96.0 96.0 96.0 71.4

18 43.1 86.9 90.7 94.2 95.3 94.9 94.8 93.0 88.8 59.7

19 0 54.8 84.4 90.8 94.4 94.5 90.9 91.1 88.6 71.9

20 30.0 72.5 74.2 81.3 90.2 91.8 89.6 88.5 86.0 70.7

All 38.0 ± 28.1 79.8 ± 11.1 87.5 ± 6.6 91.0 ± 4.4 92.8 ± 2.7 92.7 ± 3.5 91.2 ± 4.32 89.0 ± 5.3 83.3 ± 7.2 61.6 ± 9.6

mm for MAD and 6.90±2.07 mm for MAXD. The results of slice-by-slice DSC are shown

in Table 2.4, which indicate that they are consistent with the volumetric DSC results. In

addition, our method delivers similar consistent results of MAD and MAXD to the DSC

(see Table 2.3).
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Table 2.5: Peripheral zone (PZ), central gland (CG) and whole gland (WG) mean TRE
results for non rigid MR-TRUS registration.

PZ CG WG

Initial alignment (mm) 2.81 ± 1.01 2.17 ± 0.60 2.44 ± 0.85

TRE (mm) 1.97 ± 0.86 1.58 ± 0.82 1.74 ± 0.84

2.3.2 Reproducibility

The variability in non-rigid registration due to manual initialization was determined by

calculating the mean and standard deviations of the calculated TRE values from repeated

segmentations. Manual rigid initialization variability for non-rigid registration resulted

in a mean value of 1.86 mm and a standard deviation of 0.73 mm for the TREs. We

performed a Mann Whitney U test on the two TRE data sets calculated for the deformable

registration (20 prostates) and the reproducibility (10 prostates), which indicated no

statistically significant difference between the two groups (p > 0.05).

2.3.3 Computation Time

The mean registration time of our method per patient was 90± 5 s in addition to 30± 5

s for initialization.

2.4 Discussion and Conclusion

This chapter describes a convex optimization approach we proposed to non-rigid image-

based MR-TRUS registration, which yielded PZ, CG and WG mean TRE values of 1.97

mm, 1.90 mm, and 1.93 mm respectively, which is less than 2.5 mm [23] [38], half of the
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smallest clinically significant tumor radius. The slighter higher PZ TRE value is due to

deformation caused by the US probe.

Table 2.3 shows that the proposed method generated a favorable DSC value of 92.0±

3.4% for the mid-gland, 80.8 ± 7.8% for the apex, and 81.7 ± 6.4% for the base. The

lower DSC values for the apex and base compared to the mid-gland were caused by the

low degree of structure recognition in these regions for MR and especially TRUS images.

The MR-3D TRUS registration is not time critical in our approach to 3D TRUS/MR

guided biopsy because the registration is performed before the intervention. The T2w-

MRI and 3D TRUS images were acquired about 7 to 10 days before the intervention and

suspicious lesions are delineated using the MRI information and mapped onto the TRUS

image via the proposed method. Preoperative TRUS imaging permits adequate time to

ensure proper multimodal alignment without prolonging the patient’s biopsy procedure

or level of discomfort [22]. To further shorten the computation time of registration, future

work will involve optimizing the convex optimization code and implementing it in C++.

To reduce the false negative rate for prostate biopsy, we developed an alternate ap-

proach using 3D TRUS images registered with MR images with targets identified to guide

the biopsy. An efficient convex optimization-based approach was proposed to extract the

non-rigid MR-TRUS deformation field by registering the given two MIND descriptors,

which does not require segmentation of the prostate boundaries. We applied this method

on 20 patient images. The results demonstrate that the proposed method yields clinically

sufficient accuracy with fewer user interactions.
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Non-Rigid Surface-Based MR-TRUS

Registration

3.1 Introduction

The accuracy of targeting of the suspicious lesion, which has been identified in the MR

image, depends on the accurate registration of the 3D TRUS and MR images. However,

the prostate of the same patient may undergo deformations between the TRUS and MR

imaging procedures as the altered position of the patient during the TRUS and MRI

procedures, bladder filling, rectal wall motion and/or the transducer probe pressure may

shift and/or deform the prostate. In order to compensate for these deformations, non-

rigid registration methods are required for accurate prostate multimodal registration.

Efficient and accurate non-rigid 3D MR-TRUS registration is a challenging task due to

the totally different image appearances between these two image modalities, and the

low degree of structure recognition in the prostate apex and base in the MR image and

44
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especially TRUS images that may mislead image-based methods in those zones [40].

Therefore, a prostate surface-based registration method may help to resolve this issue by

constraining the impact of artifacts and poor recognition of prostate boundaries in the

MR and TRUS images. Thus, accurate manual or semi-automated prostate segmentation

is required with the opportunity to edit the boundaries allowing an expert user to resolve

any issues related to the different appearance of the prostate boundaries in the two image

modalities.

Hu et al. [58] used a patient-specific finite element-based statistical motion model

trained by biomechanical simulations and registered the model to 3D TRUS images, which

was done by maximizing the likelihood of a particular model shape given a voxel intensity-

based feature that provided an estimate of surface normal vectors at the boundary of the

gland. The median TRE for 8 patients from 100 experiments was 2.40 mm. However,

the method is based on the manual segmentation of the prostate gland itself, the central

and peripheral zones, the pelvic bone, the rectum and the bladder on the MR images,

which is time consuming.

Mitra et al. [59] proposed a 2D thin-plate spline-based non-linear regularization ap-

proach to align the sampled points of the segmented prostate contours, which essentially

match the Bhattacharyya distance of the applied statistical shape contexts. The results

showed an average TRE of 1.60 ± 1.17 mm from 20 pairs mid-gland TRUS and MR.

However, the proposed framework only worked in 2D, which limits its application for

clinical practice.

Singh et al. [60] described a manual visual method for registering MR and TRUS

images, which required many user interactions to find corresponding control points ac-
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cording to the anatomical features in the MR and TRUS images.

Recent work by Cool et al. [22] suggested a pre-biopsy MR-TRUS registration, where

a landmark-based initialization with thin-plate spline (TPS) [61] yielded a mean TRE of

4.3±1.2 mm, and an iterative closest point rigid initialization followed by TPS yielded a

value of 5.2±1.5mm. This could indicate an inaccurate gland distortion caused by a poor

point correspondence between the two surfaces for TPS deformation or a mismatching

of the two surfaces, which does not consider the deformation of the prostate internal

architecture.

In this chapter, we developed a non-rigid prostate registration of 3D TRUS to T2-

weighted MR images based on specific prostate boundary point correspondences followed

by a 3D TPS deformation [61]. The primary contributions of this chapter are summarized

as follows:

1) 2D slice correspondences are determined by rotationally re-slicing two segmented

prostate surfaces from both 3D MR and TRUS images around a specified rotational axis,

which is started by initializing 3 pairs of corresponding anatomical landmarks, and 2)

a method for finding the point correspondences based on the resliced 2D corresponding

slices. This approach takes into account the correspondences on the prostate surface,

inside the prostate, as well as the centroid of the prostate.

3.2 Methods and Experiments

To compensate for prostate deformation, a non-rigid surface-based registration method

based on Thin Plate Spline (TPS) [34] was performed. The proposed method is divided
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into the following steps.

3.2.1 Initialization

We first perform a manual initialization to roughly align the prostate in the MR and

TRUS images, since the prostate location and direction in the TRUS image is often

arbitrary. Since with this step it is difficult to achieve robust results using an automated

rigid registration method, we perform this initialization step manually. The registration

to generate a rigid transform as initial alignment of the MR to 3D TRUS images makes

use of 6 manually identified corresponding landmarks, which are: the end point of the

peripheral zone at the apex, leftmost, rightmost, top-most, bottom-most points on the

largest view of the axial slices, and the urethra at its entrance into the prostate on the

MR (source) and 3D TRUS (target) images. Figure 3.1 shows an example of 6 pairs of

manually placed landmarks. These corresponding landmarks are selected based on the

prostate structure and architecture that can be observed on both MR and 3D TRUS

images, such as the prostate boundary and/or the boundary of the bladder. The MR

image is then re-sampled and resized to the same voxel size (0.19×0.19×0.19 mm3) and

dimensions (448× 448× 350) as the TRUS image.

3.2.2 Prostate Segmentation

Following the initialization, we manually segmented the prostate surfaces from both MR

and 3D TRUS images under the supervision of an experienced radiologist (C.R.). Al-

though a number of algorithms for automated or semi-automated prostate segmentation
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can be used [62] [63] [64], we choose to use manual segmentations for this study to

minimize the registration error caused by the segmentation procedure. This approach

allows us to study the impact of the non-rigid registration method on the accuracy and

variability of the registration.

3.2.3 2D Slice Correspondences

Each pair of the 3D MR and TRUS images are automatically resliced around a rotational

axis, starting from a selected corresponding view. The rotational axis is specified using

2 of the manually identified anatomical landmarks (See Figure 3.2): the end point of

the peripheral zone at the apex and the urethra at its entrance into the prostate. The

landmarks for generating the first corresponding view uses the 2 points for setting the

rotational axis, as well as the bottom-most point on the largest view of the axial slices.

2D slice correspondences are determined by rotationally reslicing the two manually

segmented prostate surfaces from the 3D MR and TRUS images around the specified

rotational axis. Figure 3.3 shows an example of the resliced 2D contours.

The point correspondences are found based on the boundaries of the 2D slice corre-

spondences instead of finding the 3D point correspondences directly, because once the

first corresponding slice is manually confirmed, the correspondences are established for

each resliced contour, and there is little non-rigid deformation between resliced-planes.
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3.2.4 Point Correspondences

From the resliced corresponding 2D contours, the point correspondences is then achieved

by automatically selecting 8 points for each contour on an equal contour distance basis

(See Figure 3.4). This procedure assumes the prostate perimeter is conserved between

the 3D TRUS and MR images. While this is not true for arbitrary shapes, because the

deformation of the prostate is not large, this approach may be useful. The starting point

for each contour is the corresponding landmark of the urethra at its entrance into the

prostate. We also take into account the centroid point of the prostate, as well as the

mid-points between the centroid and the points already found on each contour to be the

corresponding points for the registration.

Based on the point correspondences, we apply a 3D TPS [34] on the 3D point cloud

(i.e., the corresponding points) in the MR image in order to align them to the corre-

sponding points of the target 3D TRUS image. TPS interpolates specified points while

minimizing an approximate curvature (integrated squared second derivative), resulting

in a smooth deformation without unexpected ripples and variations.

The set of points in MR images are denoted as pi, and in the TRUS, the correspond-

ing points are qi, where i = 1, ...N , N represents the number of points in each image,

and the transformation that maps two images by u. The registration function Jλ(u)

consists of a landmark registration metric term and a TPS term Jdm(u) that regularizes

the transformation:

Jλ(u) =
1

N

N∑
i=1

[qi − u(pi)]
TS−1

n [qi − u(pi)] + λJdm(u) , (3.1)
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In equation 3.1, the covariance matrix Sn is a 3 × 3 matrix and represents anisotropic

landmark localization errors, d refers to the dimension of the image and m to the chosen

derivative order of the functional. The term Jdm(u) defines the TPS and controls the

smoothness of the transformation. The minimization of equation 3.1 results in a smooth

transformation that approximated the distance between the landmark sets, the λ pa-

rameter controls the weighting between the two terms, and the transformation becomes

smoother as λ increases.

3.2.5 Experiments

This study was conducted with images acquired with the approval of our institutions

Human Subjects Research Ethics Board and with the informed consent of all subjects.

The proposed surface-based approach to non-rigid MR-3D TRUS registration was im-

plemented partially using Matlab R2011b (version 7.13.0.564; Natick, MA, USA) and

partially C++. The experiments were conducted on a Windows desktop with an Intel

i7-3770 CPU (3.4 GHz). The mean computation time was determined by calculating the

mean of execution time for running the program with 10 patients 3D TRUS and MR

image pairs.

Materials

The T2-weighted MR images and the corresponding 3D TRUS images were acquired of

17 patients scheduled prostate biopsy. The MR images were acquired using a body coil

with a whole-body 3T Excite 12.0 MRI system (GEHC, Milwaukee, WI, USA) with an

image size of 512× 512× 36 voxels with a voxel size of 0.27× 0.27× 2.2 mm3. The 3D
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(a)

(b)

(c)

Figure 3.1: Yellow crosses indicate anatomical landmarks in the 3D TRUS (left column)
and corresponding MR images (right column), (a) shows the end points of peripheral
zone at the apex, (b) shows the corresponding points with the largest view of the axial
slices, and (c) shows the corresponding entrance points of urethra into the prostate.
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(a)

(b)

Figure 3.2: Rotational axis based on the corresponding anatomical landmarks (yellow
crosses) in the 3D TRUS (left column) and corresponding MR images (right column).
(a) from sagittal view, and (b) from coronal view.
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Figure 3.3: Example of resliced corresponding 2D contours from axial view in the 3D
TRUS (left column) and corresponding MR images (right column)

Figure 3.4: A sample of point correspondence on a pair of corresponding 2D contours in
the 3D TRUS (left column) and corresponding MR images (right column).
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TRUS images were acquired using a 3D TRUS mechanical scanning system developed in

our laboratory [18], using a Philips HDI-5000 US machine with a Philips end-firing C9-5

transducer (Philips, Bothell, WA, USA). The 3D TRUS image size was 448× 448× 350

voxels with a voxel size of 0.19× 0.19× 0.19 mm3.

3.2.6 Evaluation

Accuracy

We measured the target registration error (TRE) [36] [37] as an indication of the overall

misalignment of manually identified corresponding intrinsic fiducials in the MR and 3D

TRUS images. The approximate corresponding landmarks used for rigid initialization

were not used in the evaluation. Eighty-six fiducials (calcifications and cysts) were man-

ually identified in the 17 image pairs by a trained operator (Y.S.) under the supervision

of an experienced radiologist (C.R.). Of the 86 fiducials selected, 41 were within the pe-

ripheral zone (PZ), known to be the most common site harboring cancer [55] and subject

to deformation caused by the US transducer during biopsy. Accurate biopsy targeting

relies on corrections being made for this deformation. We also measured the fiducial

localization error (FLE) [37] to allow determination whether fiducial identification dom-

inated the TRE. For FLE determination, the trained operator identified 30 fiducials in

10 prostate image pairs (three fiducials/prostate) five times over five days and recorded

their coordinates once per day.

Statistical analyses were performed in SPSS Version 15.0 (SPSS, Chicago, IL) to

determine if there was a statistical significant difference in the TREs between the manual
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rigid registration and surface-based non-rigid registration.

Reproducibility

The variability of our registration method was determined by calculating the dependence

of the non-rigid registration on the manually selecting 3 corresponding fiducials for finding

the first corresponding slice (two of the three are using to specify the rotational axis). To

study the effects of variability of selecting the 3 fiducials during initialization on TRE, 5

patients 3D prostate MR-TRUS image pairs were selected. These 3D MR-TRUS images

were initialized using manually identified fiducials selected by two trained operators,

five times each. Each initialization procedure was performed at least one day after the

previous session in order to minimize learning eects. The initialized MR-TRUS images

were then used for surface-based non-rigid registration. TRE values for each trial and

the overall TRE for all patients were then calculated.

3.3 Results

The median and root mean square (RMS) TRE results for the initial rigid alignment

and the non-rigid registration are summarized in Table 3.1, which shows an overall mean

TRE of 3.50 ± 1.34 mm for the rigid registration and 2.24 ± 0.71 mm for the non-rigid

registration.

We performed a Shapiro-Wilk test on the TREs calculated for the initial rigid registra-

tion and surface-based non-rigid registration data sets. This test revealed the TRE dis-

tributions of rigid transform and non-rigid registration were both non-normal (p < 0.05).
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Table 3.1: TREs for 17 patient image pairs.

Patient# Rigid RMS TRE (mm) Non-rigid RMS TRE (mm)

Median Mean ± std Median Mean ±std

1 2.95 2.97 ± 0.31 2.53 2.55 ± 0.52

2 4.83 4.88 ± 0.09 3.73 3.37 ± 0.77

3 2.80 2.73 ± 0.16 2.32 2.33 ± 0.06

4 2.50 2.53 ± 0.21 2.69 2.64 ± 0.58

5 1.78 1.98 ± 0.47 2.46 2.29 ± 0.48

6 2.66 3.08 ± 0.89 2.43 2.62 ± 1.02

7 4.67 4.70 ± 0.68 1.69 1.70 ± 0.05

8 1.78 1.86 ± 0.30 1.67 1.58 ± 0.29

9 1.46 1.47 ± 0.21 1.35 1.30 ± 0.30

10 4.16 4.16 ± 0.14 1.52 1.52 ± 0.07

11 3.37 3.51 ± 0.81 1.82 1.74 ± 0.34

12 2.10 2.16 ± 0.38 1.61 1.64 ± 0.12

13 3.41 3.31 ± 1.23 1.72 2.56 ± 1.20

14 5.66 5.53 ± 0.59 2.31 2.34 ± 0.57

15 2.31 2.37 ± 0.73 2.20 2.21 ± 0.32

16 2.62 2.58 ± 0.15 1.68 2.12 ± 0.74

17 4.73 4.46 ± 1.02 3.36 3.26 ± 0.67

All 2.80 3.50 ± 1.34 1.96 2.24 ± 0.71
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Table 3.2: TREs for PZ, CG and WG.

PZ CG WG

# of fiducials 41 45 86

Mean (mm) 2.08 ± 0.65 2.37 ± 0.75 2.24 ± 0.71

Median (mm) 1.77 2.30 1.96

Thus, we performed a Wilcoxon Sign Rank test for non-normal distributions, which indi-

cated a significant difference between the TRE values of the two study groups, (p < 0.01).

The FLE was 0.21 mm for 3D TRUS images, and 0.18 mm for MR. Thus, the FLEs

did not dominate the overall TRE. The mean and median TRE values for the PZ, central

gland (CG) and whole gland (WG) are summarized in 3.2, which shows that the mean

TRE for the CG is about 0.13 mm larger than the value for the PZ. Figure 5(a) shows

the frequency distribution of all measured TREs of the initial rigid alignment and Figure

5(b) the surface-based non-rigid registration for the WG and PZ. Figure 5(b) shows that

75.6% of the TRE values for WG and 80.5% for PZ are smaller than 2.5 mm. Figure 3.5(a)

shows the frequency distribution of all measured TREs of the initial rigid alignment and

Figure 3.5(b) the surface-based non-rigid registration for the WG and PZ. Figure 3.5(b)

shows that 75.6% of the TRE values for WG and 80.5% for PZ are smaller than 2.5 mm.

Reproducibility

The variability in surface-based non-rigid registration due to manually selecting the ro-

tational axis was determined by calculating the mean and standard deviations of the

calculated TRE values from repeated axis selections. The variability of manual rota-

tional axis selection for non-rigid registration resulted in a mean TRE value of 2.38 mm

and a standard deviation of 0.99 mm. We performed a Mann Whitney U test on the two
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(a)

(b)

Figure 3.5: WG (black) and PZ (white) frequency distributions of: (a) rigid alignment
TRE between all 86 fiducial pairs, and (b) surface-based non-rigid registration TRE.
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TRE data sets calculated for the deformable registration (17 prostates) and the repro-

ducibility (5 prostates), which indicated no significant statistical difference between the

two groups (p > 0.05).

Computation Time

The mean registration time of our method per patient was 60± 5 s in addition to 4± 1

minutes for manually segmenting one patients MR and TRUS images, and 60 ± 5 s for

manually selecting the rotational axis.

3.4 Discussion and Conclusion

In this work, we proposed an approach to find point correspondences for surface-based

non-rigid 3D MR-TRUS registration, which yielded PZ, CG and WG mean TRE values

of 2.08 mm, 2.37 mm, and 2.24 mm respectively, which is less than 2.5 mm, half of the

smallest clinically significant tumor radius [23] [38]. Although the PZ is deformed by

pressure of the TRUS transducer, the PZ TRE is slighter lower than the CG, because

the surface-based registration compensates better the deformation as this region is closer

to the prostate boundary.

To reduce the false negative rate of conventional 2D TRUS guided biopsy prostate

biopsy, we developed a 3D TRUS-guided biopsy system, which makes use of TRUS

images registered with MR images with identified tumor targets to guide the biopsy.

We proposed an efficient surface-based approach employing: 1) rotationally resliced two

corresponding segmented prostate surfaces from both 3D MR and TRUS images around
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a specified axis, and 2) a novel approach to find point correspondences, which takes into

account the correspondences on the prostate surface, inside the prostate, as well as the

centroid of the prostate. We applied this method on 17 patient images and our results

demonstrate that the proposed method yields clinically sufficient accuracy.
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Summary

To reduce the false negative rate for image-guided prostate biopsy, this thesis summarizes

two 3D MR-TRUS image registration methods. The registration procedure is critical for

targeting the suspicious lesions identified in the MR image. Accurate registration allows

for improved planning, targeting and needle guidance.

The method described in Chapter 2 makes use of a convex optimization approach to

extract the non-rigid MR-TRUS deformation field by registering the given two MIND

descriptors, which do not require segmentation of the prostate boundaries. We applied

this method on 20 patient images, which yielded prostate PZ, CG and WG mean TRE

values of 1.97 mm, 1.90 mm, and 1.93 mm respectively, which is less than 2.5 mm, half of

the smallest clinically significant tumor radius [23] [38]. The higher PZ TRE value might

be due to deformation caused by the US probe. This method also generated a favorable

DSC value of 92.0± 3.4% for the mid-gland, 80.8± 7.8% for the apex, and 81.7± 6.4%

for the base. The lower DSC values for the apex and base compared to the mid-gland

might be caused by the low degree of structure recognition in these regions for MR and

61
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especially TRUS images.

Our mean TRE of 1.93 ± 0.73 mm is higher than the value of 1.60 ± 1.17 mm in

Mitra et al. [59]. However, their method needed a segmented prostate surface for both

MR and TRUS images, and the established MR-TRUS slice correspondence, which is

difficult to achieve in practice. Our RMS TRE of 1.76 mm is lower than the 2.4 mm

achieved by Hu et al. [58]. They required additional segmentations of the MR prostate

gland , pelvic bone, rectum, and bladder for biomechanical modeling (approximately 45

min per patient).

The T2-weighted MR and 3D TRUS images were acquired about 7 to 10 days before

the intervention and suspicious lesions are delineated using the MR information and

mapped onto the TRUS image via the proposed method. Preoperative TRUS imaging

permits adequate time to ensure proper multimodal alignment without prolonging the

patient’s biopsy procedure or level of discomfort [22]. The mean registration time of

this method per patient is 90 ± 5 s in addition to 30 ± 5 s for initialization. To further

shorten the computation time of registration, future work will involve optimizing the

convex optimization code and implementing it in C++.

Chapter 3 describes an surface-based non-rigid 3D MR-TRUS registration approach

employing:

1) rotationally resliced two corresponding segmented prostate surfaces from both 3D MR

and TRUS images around a specified axis, and

2) a novel approach to find point correspondences, which takes into account the corre-

spondences on the prostate surface, inside the prostate, as well as the centroid of the

prostate.
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We applied this method on 17 patient images and our results demonstrate that the pro-

posed method yields clinically sufficient accuracy. The mean TRE values for PZ, CG

and WG showed 2.08 mm, 2.37 mm, and 2.24 mm respectively, which is also less than

2.5 mm. Although the PZ is deformed by pressure of the TRUS transducer, the PZ TRE

is slighter lower than the CG, because the surface-based registration compensates better

the deformation as this region is closer to the prostate boundary.

The main time consuming part of the whole registration pipeline is the manual seg-

mentation for each patients 3D MR and TRUS image. We are currently exploring alter-

native, automatic methods for segmenting the prostate, which would significantly reduce

the segmentation time [62] [63] [64]. Implementing the code in C++ will shorten the

computation time of registration, particularly for achieving point correspondences.

Comparing the performance of the image-based to the surface-based method, the

mean TRE value from image-based registration for WG is 0.31 mm lower than the surface-

based result, whereas the registration’s computation time is 30 s longer (calculation based

on the non-optimized codes). In terms of the consideration for clinical use, the surface-

based method is recommended, because it’s less affected by the image artifact. Thereby,

it could be used for every case.
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Appendix A

Proofs of Theorems

A.1 Proof of Prop. 2.2.1

Proof In view of the conjugate representation of the convex quadratic function

c

2
v2 = max

t
t · v − 1

2c
t2 , (A.1)

we can equally rewrite the first term of (2.3) as follows

1

2

∫
(P +∇P · h)2dx

= max
w(x)

∫
w(P +∇P · h)dx− 1

2

∫
w2dx . (A.2)
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On the other hand, we also have

α

2

3∑
i=1

∫
|∇(ui + hi)|2 dx

= max
q

3∑
i=1

∫
div qi(ui + hi)dx−

1

2α

3∑
i=1

∫
q2
i dx . (A.3)

Considering (A.2) and (A.3), it is easy to see that the convex minimization problem

(2.3) is mathematically equivalent to the following minimax problem:

min
h

max
w,q

∫
w(P +∇P · h)dx+

3∑
i=1

∫
div qi(ui + hi)dx

− 1

2

∫
w2dx− 1

2α

3∑
i=1

∫
q2
i dx , (A.4)

i.e.

min
h

max
w,q

∫
(wP +

3∑
i=1

ui div qi)dx−
1

2

∫
w2dx

− 1

2α

3∑
i=1

∫
q2
i dx+

3∑
i=1

∫
hi(w · ∂iP + div qi)dx , (A.5)

which is called the primal-dual formulation in this paper.

After variation by hi(x), i = 1, 2, 3, the minimization of the primal-dual formulation

(A.5) gives rise to the linear equalities’ constraints

(w · ∂iP + div qi)(x) = 0 , i = 1, 2, 3 ; (A.6)
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and the maximization problem

max
w,q

E(w, q) :=

∫
(wP +

3∑
i=1

ui div qi)dx−
1

2

∫
w2dx

− 1

2α

3∑
i=1

∫
q2
i (x)dx (A.7)

in combination. Therefore, Prop. 2.2.1 is proved.
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